Cette mission prévoit de faire se poser une douzaine de fois sur Titan, un des satellites de Saturne, en 2034, un petit hélicoptère (rotorcraft) destiné à étudier son potentiel d’habitabilié. Mais il apparait que celui-ci se heurtera à des vents de surface capables de déplacer des rochers cylindriques de plus d’un demi-mètre de diamètre. Précédemment la sonde Huyghens, dans le cadre de la mission Cassini, avait atteint Titan en 2005, Elle y avait observé des champs de roches s’étendant à l’infini, ainsi que des blocs de glace balayés par un vent violent.
Pour mieux évaluer les enjeux de la mission Dragonfly, la Nasa a fait réaliser un document public dont on trouvera ci-dessous les principales dispositions.
Référence
Dragonfly (en français : « Libellule ») est une mission d’exploration du système solaire de l’agence spatiale américaine, la NASA, dont l’objectif est d’étudier Titan, le plus gros satellite naturel de Saturne. Les caractéristiques de cette lune — atmosphère épaisse, lacs de méthane et d’éthane liquides, substances organiques complexes, cryovolcanisme, pluie de méthane — en font un monde d’un très grand intérêt sur le plan scientifique.
La mission spatiale exploite la présence d’une atmosphère dense (1,5 fois celle de la Terre) et d’une gravité inférieure à celle de la Lune : elle met en œuvre un aérobot de type aérogire d’une masse de 875 kg, qui effectuera de multiples vols de courte durée pour étudier la basse atmosphère et la surface de Titan. Pour disposer de suffisamment d’énergie pour fonctionner et survivre dans une température moyenne de −180 °C, l’engin spatial dispose d’un générateur thermoélectrique à radioisotope.
Dragonfly est un des deux finalistes retenus en décembre 2017 pour la quatrième mission du programme New Frontiers, qui regroupe des sondes spatiales chargées d’explorer le système solaire avec un coût plafonné à un milliard de dollars. La NASA sélectionne cette mission en juin 2019. Celle-ci doit décoller en 2028 et se poser sur Titan en décembre 2034.
Contexte
La mission Cassini-Huygens, qui a étudié Titan entre 2004 et 2017, a révélé un monde d’un grand intérêt scientifique. Une chimie complexe et diversifiée reposant sur le carbone se déroule à la surface de cette lune de Saturne. On retrouve les mêmes processus que sur Terre mais le cycle du méthane remplace celui de l’eau. C’est un laboratoire naturel unique pour étudier la chimie prébiotique et pour rechercher des signatures de formes de vie basées sur les hydrocarbures.
Il se peut que les matières organiques interagissent avec de l’eau liquide à la surface ou non loin de la surface accroissent la possibilité de l’apparition d’une chimie prébiotique. Par ailleurs, des échanges pourraient avoir lieu avec un océan intérieur.
Les mesures effectuées par les instruments de la mission ont laissé beaucoup d’inconnues sur la composition des matériaux en surface. Par contre, les scientifiques ont la certitude que celle-ci est très variable selon les lieux. Il est donc essentiel de collecter des données sur différents sites pour déterminer dans quelle mesure la chimie prébiotique a pu progresser dans des environnements géologiques différents. Compte tenu de cet objectif, la mobilité d’un engin spatial est essentielle pour pouvoir effectuer les mesures sur les différents sites
Projets d’exploration précédents
Avant même l’arrivée de Cassini-Huygens dans le système saturnien, des groupes de travail préparant pour la NASA le plan décennal d’exploration du système solaire de 2003 avaient identifié à la fois l’importance scientifique de la chimie à l’œuvre à la surface de Titan et le potentiel d’une mission exploitant la mobilité d’un aéronef. Les premiers scénarios de mission reposant sur des engins plus lourds que l’air et sur des hélicoptères datent de cette époque.
Depuis la réception des premiers résultats fournis par Cassini-Huygens, plusieurs projets aux caractéristiques et aux coûts variables ont été proposés sans qu’aucun ne soit retenu :
- Titan Prebiotic Explorer (TIPEX) est une étude interne du centre JPL de la NASA datant de 2006 comprenant un orbiteur et une montgolfière. Des échantillons de sol sont collectés à l’aide d’un dispositif de prélèvement largué puis ramené dans la gondole
- Titan Explorer est la première proposition répondant au cahier des charges définissant les attentes scientifiques de la NASA. Ce projet de 2007 très ambitieux, élaboré par le laboratoire Applied Physics Laboratory (constructeur de Dragonfly), comprend un orbiteur utilisant l’aérocapture, une montgolfière et un atterrisseur statique ;
- l’Agence spatiale européenne, qui a développé l’atterrisseur Huygens propose à peu près à la même époque Titan and Enceladus Mission (TandEM) un projet combinant l’étude de Titan et d’Encelade, autre satellite de Saturne ;
- Titan Saturn System Mission (TSSM) résulte de la fusion en 2009 des études menées jusque-là par la NASA et l’Agence spatiale européenne. La mission devait comprendre un orbiteur américain et deux engins développés par l’Europe : une montgolfière fournie par le CNES et un atterrisseur fonctionnant sur batterie et donc avec une durée de vie brève, qui devrait se poser sur l’une des mers de méthane de Titan ;
- AVIATR est un projet d’aéronef alimenté en énergie par un générateur thermoélectrique à radioisotope et moteur Stirling (ASRG) développé en réponse à l’appel à propositions de 2010 du programme Discovery. Mais le projet s’est avéré incompatible avec les contraintes budgétaires de ce programme destiné aux missions à faible budget .
- Titan Mare Explorer (TIME) est un des trois finalistes retenus en 2011 pour la sélection de la 12e mission du programme Discovery. Il s’agissait de faire atterrir sur un lac de méthane Ligeia Mare un engin alimenté en énergie par un ASRG. Le projet ne sera pas retenu dans la sélection finale en 2012.
Historique du projet
La réactivation du programme New Frontiers
Article détaillé : programme New Frontiers.
Après une pause d’un an imposée par des contraintes budgétaires, le programme New Frontiers de la NASA, qui rassemble des missions d’exploration du système solaire à coût intermédiaire, est réactivé début 2015. Un appel à propositions est lancé fin 2016. Il est prévu à l’époque qu’une présélection débouchant sur des études approfondies soit finalisée en novembre 2017 puis que la sélection finale soit effectuée en juillet 2019. Les propositions de mission doivent porter sur un des six thèmes énoncés dans le plan stratégique et le plan scientifique de la NASA de 2014:
- mission de retour d’échantillons de la surface d’une comète ;
- mission de retour d’échantillons du sol prélevés dans le Bassin Pôle Sud-Aitken près du pôle sud de la Lune ;
- mondes océaniques ; Encelade et/ou Titan ;
- sonde atmosphérique de Saturne ;
- étude des astéroïdes troyens orbitant aux point de Lagrange L4 ou L5 de la planète Jupiter ;
- étude de la composition et des caractéristiques de la surface de Vénus visant à répondre aux deux objectifs suivants : formation des planètes terrestres et modalités de l’évolution de Vénus depuis son origine sans doute similaire à celle de la Terre.
Sélection du projet Dragonfly (2017-2019)
Douze projets sont proposés. Dragonfly est le fruit des travaux d’une équipe du laboratoire Applied Physics Laboratory (APL) de l’Université Johns-Hopkins dans le Maryland dirigée par la planétologue Elizabeth Turtle.
Le laboratoire APL joue un rôle de pointe dans la réalisation des satellites scientifiques et des sondes spatiales d’exploration du système solaire lancées par la NASA avec des missions comme MESSENGER (2004), première sonde spatiale à s’être placée en orbite autour de la planète Mercure, New Horizons (2006) première sonde spatiale à avoir étudié in situ la planète naine Pluton, l’observatoire solaire Solar Probe Plus lancé en 2018, Europa Clipper (2023) (partenariat avec le Jet Propulsion Laboratory) chargée d’étudier la lune Europe de la planète géante Jupiter et DART (2020)
Dragonfly est avec CAESAR (Mission de retour d’échantillons de la comète 67P/Tchourioumov-Guérassimenko) une des deux missions retenues en décembre 2017 pour la sélection finale qui doit avoir lieu en 2019. La mission Dragonfly est finalement sélectionnée le 27 juin 2019 bien que Titan ne fasse pas partie des destinations retenues par le dernier rapport décennal sur les sciences planétaires sur lequel la NASA doit normalement baser son choix. En sélectionnant cette mission l’agence spatiale a voulu réagir rapidement aux dernières découvertes effectuées sur cette lune par la mission Cassini Huygens et le télescope Hubble sans attendre la prochaine actualisation de ce rapport.
Développement de la mission (2019-2028)
Le lancement de la mission est programmé initialement pour 2026 mais en septembre 2020 la date est repoussée en 2027 puis en 2028 pour prendre en compte des facteurs exogènes comme l’épidémie de COVID en cours.
Malgré ces reports l’arrivée à la surface de Titan reste programmée pour 2034 En novembre 2024, la NASA sélectionne le lanceur Falcon Heavy de la société SpaceX pour le lancement de sa sonde spatiale qui doit décoller depuis le complexe de lancement 39A du centre spatial Kennedy. La prestation est facturée un montant de 256,6 millions de dollars. La fenêtre de lancement s’ouvre le 5 juillet 2028 et se referme le 25 juillet.
En avril 2024 le cout du projet qui avait été estimé initialement à 2,2 atteint désormais 3,5 milliards de dollars (avril 2024) ce qui alimente les rumeurs d’annulation compte tenu des dépassements que connait à la même époque le projet Mars Sample Return. Mais la NASA confirme à cette date la poursuite des développements en annonçant par ailleurs que le projet a franchi avec succès la revue de conception critique (en anglais : Critical Design Review ou CDR) qui fige la conception du véhicule et confirme son coût de fabrication.
Le développement de l’aérobot qui doit pouvoir fonctionner dans une atmosphère très particulière à des températures extrêmement basses (−180 °C) fait face à de nombreuses difficultés. Pour vérifier le fonctionnement des composants dans cet environnement le laboratoire APL dans ses locaux met en service fin 2023 une chambre cubique de plus de 4 mètres de côté, réalisée en acier inoxydable, dans laquelle est reproduite la température et la pression que subira Dragonfly[12].
Le spectromètre de masse DraMS devait initialement analyser la composition des échantillons de sol prélevées mais également celle de l’atmosphère. Mais les ingénieurs ne parviennent pas à concevoir une ouverture du fuselage qui ne compromettrait pas la sécurité de l’engin (chute de la température interne) et ils doivent renoncer à cette fonctionnalité. La conception des lubrifiants qui subissent des températures anormalement basses constituent une autre difficulté.
Certaines caractéristiques de l’aérobot évoluent durant la phase de conception comme l’utilisation de rotors à trois pales (au lieu de deux) et la modification de l’emplacement de certains instruments[10].
Objectifs de la mission
Durant sa mission, Dragonfly doit collecter les données suivantes:
- Prélever des échantillons des matériaux en surface et identifier à l’aide d’un spectromètre de masse ses éléments chimiques et les processus produisant des composants significatifs sur le plan biologique ;
- Mesurer les éléments chimiques présents à la surface à l’aide d’un spectromètre à rayons gamma ;
- Enregistrer à l’aide de capteurs météorologiques les conditions atmosphériques et de la surface en particulier les changements dus au lieu et au cycle diurne ;
- Réaliser des photos permettant de caractériser les formations géologiques ;
- Mesurer les mouvements sismiques pour déterminer la structure du sous-sol et son activité ;
- En vol établir des profils atmosphériques ;
- En vol réaliser des photos aériennes de la géologie de la surface ;
- En vol fournir le contexte des mesures effectuées en surface et effectuer des reconnaissances des sites présentant un intérêt scientifique.
Site d’atterrissage
Le site d’atterrissage retenu est un champ de dunes situé près du cratère d’impact Selk (7° N, 199° O) de 90 kilomètres de diamètre. La région fait partie de l’immense champ de dunes de Shangri-La où s’était déjà posé l’atterrisseur européen Huygens. La sélection de ce site résulte d’un ensemble de contraintes:
- Pour que Dragonfly se pose sans risquer de se renverser, le site retenu doit comporter un sol présentant une pente modérée (inférieure à 10-15 %) et dépourvu d’obstacles importants (diamètre des roches inférieur à un mètre). Les champs de dunes de Titan, bien qu’ils n’aient été cartographiés par la sonde spatiale Cassini entre 2004 et 2017 qu’avec une résolution spatiale très grossière (de l’ordre du kilomètre), présentent généralement ces caractéristiques.
- La sonde spatiale va subir une forte décélération durant sa rentrée dans l’atmosphère de Titan et son bouclier thermique doit résister à des températures d’autant plus fortes que sa vitesse d’arrivée est élevée. Les ingénieurs ont choisi d’effectuer une rentrée directe (sans insertion en orbite) sous un angle de 65° (identique à celui d’Huygens) ce qui limite les zones d’atterrissage. Par ailleurs la rentrée se fera dans l’hémisphère délimitée par les longitudes 180 et 360 Ouest pour soustraire la vitesse de rotation de la lune à la vitesse d’arrivée de la sonde spatiale et de ce fait limiter l’épaisseur du bouclier thermique.
- Lorsque la sonde spatiale arrivera sur Titan, ce sera l’hiver dans l’hémisphère nord/ Les latitudes élevées où se situent les lacs d’hydrocarbures ne seront pas éclairées et sont donc exclues des sites d’atterrissage potentiels.
- La rentrée dans l’atmosphère, la descente vers le sol, l’atterrissage ainsi que les deux à trois premiers jours (jour terrestre) de la mission consacrés aux vérifications des systèmes doivent pouvoir être suivis en temps réel par les équipes au sol. Pour y parvenir la Terre doit être visible depuis cette région durant tout ce laps de temps. Compte tenu de la vitesse de rotation de la lune, le terminater se déplace de 22,5° par jour terrestre. Cette contrainte impose donc que le site d’atterrissage se situe à plus de 70° à l’ouest du terminateur.
- Dans la zone de forme toroïdale satisfaisant ces différentes contraintes, le cratère d’impact Selk constitue l’objectif scientifique le plus évident. Le spectromètre imageur VIMS de la sonde spatiale Cassini y a détecté la présence de matériaux riches en eau qui ont permis des interactions avec les matériaux organiques.
Caractéristiques techniques de rentrée
Comme toutes les sondes spatiales de la NASA destinées à se poser sur un corps planétaire doté d’une atmosphère, Dragonfly est composé d’un étage de croisière qui prend en charge le transit de la Terre jusqu’au voisinage de Titan ..L’ aérobot est encapsulé dans un véhicule de rentrée qui doit le protéger de l’échauffement thermique subie par la sonde spatiale durant sa rentrée atmosphérique à grande vitesse. Une fois que la vitesse a suffisamment décrue, les deux moitiés du bouclier thermique sont éjectés et des parachutes sont déployés pour réduire la vitesse jusqu’à l’arrivée au sol.e de rentrée
Le véhicule de rentrée comprend un bouclier thermique de 4,5 mètres de diamètre qui reprend les technologies mises en œuvre par les astromobiles martiens Curiosity et Perseverance. Le bouclier comprend un ensemble de capteurs DrEAM (en anglais : Dragonfly Entry Aerosciences Measurements), développés conjointement par le centre de recherche Ames de la NASA et l’Agence spatiale allemande, qui doivent collecter des données sur les conditions rencontrées (pression, température), sur les caractéristiques de la haute atmosphère (abondance du méthane, etc.) et sur les performances du bouclier thermique.
Architecture de l’aérobot
Dragonfly est comme ce drone, un octorotor utilisant des paires de rotor. Cette formule mécaniquement simple et disposant d’une redondance satisfaisante permet d’obtenir un aéronef très manœuvrant.
Pour pouvoir explorer plusieurs sites à la surface de Titan distants de 10 à 100 km entre eux, différents scénarios ont été étudiés. Le recours à plusieurs atterrisseurs nécessite de développer plusieurs copies des instruments scientifiques et du système d’acquisition avec un impact fort en termes de masse et donc de coût. L’approche la plus favorable consiste à utiliser un seul ensemble instrumental et à le déplacer d’un site à un autre.
Plusieurs architectures d’aéronef ont été étudiées : hélicoptère, ballon gonflé à l’hélium ou à l’hydrogène, montgolfière (ballon à air chaud) et avion. La solution retenue exploite le fait que Titan a une gravité sept fois plus réduite que celle de la Terre et dispose d’une atmosphère 1,45 fois plus épaisse. Ces deux caractéristiques sont favorables à la mise en œuvre d’un engin volant plus lourd que l’air, puisque les deux combinés font qu’il est presque 11 fois moins énergivore de faire voler un drone sur Titan que sur la Terre..
Les ingénieurs ont choisi la formule de l’octorotor, aéronef équipé de huit rotors à trois pales de 1,85 mètres de diamètre (deux à chaque coin de sa structure). C’est l’équivalent d’un quadrirotor mais la présence de paires de rotors fournit une redondance essentielle dans un contexte où aucune réparation ne peut être envisagée. Les déplacements de l’aéronef sont obtenus uniquement en faisant varier la vitesse de rotation d’un ou plusieurs rotors. Cette architecture, rendue possible par les progrès de l’électronique chargée du pilotage de la vitesse des rotors, permet d’obtenir un ensemble mécanique plus simple que celle d’un hélicoptère. La facilité de sa mise en œuvre est illustrée par la multiplication récente des drones de ce type.
Cette formule permet de mieux contrôler les phases de vol et d’atterrissage. Par ailleurs un engin de ce type peut être facilement testé sur Terre. Son encombrement est compatible avec le volume disponible dans le module de descente chargé de le protéger durant la rentrée atmosphérique dans l’atmosphère de Titan
Structure
Dragonfly est un engin de 875 kg long de 3,85 mètres pour une largeur de 3,85 mètres et une hauteur de 1,75 mètres. Il avait été envisagé initialement de munir Dragonfly d’un système de flottaison pour que l’aérobot puisse se poser sur les lacs de méthane de Titan. Mais cette option a été abandonnée au profit d’un système d’atterrissage constitué par deux patins ne permettant de se poser que sur le sol ferme.
La forme et la taille de l’aéronef ont dû prendre en compte le volume disponible dans le module de descente chargé de protéger l’engin durant la rentrée atmosphérique sur Titan. En position de stockage dans le module de descente, les patins sont repliés. Le corps de l’aéronef est de forme rectangulaire avec le MMRTG (système de production d’énergie) fixé à l’arrière en position inclinée dans une configuration analogue à celle du MMRTG du rover Curiosity.
Une antenne parabolique grand gain, utilisée pour les communications avec la Terre, est fixée sur la partie supérieure de l’aérobot. Lorsqu’elle n’est pas utilisée, elle est repliée. Deux systèmes de prélèvement d’échantillons du sol de Titan (un par patin), de conception très simple, permettent d’alimenter le spectromètre de masse. Il s’agit d’une foreuse disposant d’un actuateur avec un seul degré de liberté.
La densité de l’atmosphère de Titan permet de convoyer pneumatiquement l’échantillon de sol prélevé, quelle que soit sa nature, par un système d’aspiration jusqu’à l’instrument effectuant son analyse.
Capacités
Dragonfly peut effectuer des vols de quelques heures en pilotage automatique en utilisant une batterie électrique comme source d’énergie. Celle-ci, d’une capacité de 135 Ah, est rechargée au sol à l’aide d’un générateur thermoélectrique à radioisotope embarqué. Durant la phase de vol, le drone analyse la composition de l’atmosphère et établit le profil vertical de celle-ci.
Lorsqu’il est au sol, il étudie la composition des matériaux organiques et des glaces de la surface en utilisant un spectromètre de masse et un spectromètre gamma à neutrons actifs. Le drone dispose également d’instruments pour étudier la météorologie et effectuer des études sismiques
Énergie
Un MMRTG similaire à celui situé à l’arrière du rover Curiosity sur Mars pourrait être utilisé pour fournir l’énergie de l’aérobot Dragonfly.
L’énergie constitue la principale contrainte à laquelle doit faire face un aérobot sur Titan. L’énergie solaire disponible au niveau de l’orbite de cette lune est 100 fois moins importante que sur Terre. Par ailleurs, l’atmosphère épaisse et brumeuse de Titan filtre le rayonnement du Soleil divisant encore par 10 cette faible quantité d’énergie solaire. Les besoins en énergie sont accrus par la température particulièrement basse qui nécessite de produire de la chaleur pour maintenir en fonctionnement de nombreux composants de l’aérobot.
Dans ces conditions le recours à un générateur thermoélectrique à radioisotope (MMRTG), produisant de l’énergie électrique par conversion de l’énergie thermique résultant de la désintégration radioactive de plutonium 238 constitue la seule option disponible.
Le programme New Frontiers met à disposition de la mission qui sera retenue trois MMRTG analogues à celui utilisé par le rover Curiosity sur Mars. Chaque MMRTG fournit en début de vie 2 000 watts thermiques convertis en 120 watts électriques. Compte tenu de leur masse unitaire, il ne peut pas être envisagé d’utiliser plus d’un MMRTG sur Dragonfly. La durée du transit entre la Terre et Titan (environ 9 ans) qui entraînera une diminution sensible de l’énergie produite et le retour d’expérience pour l’instant limité à 5 ans sur Curiosity, ont incité les concepteurs de Dragonfly à tabler sur la production de 70 watts électriques.
L’énergie thermique non convertie en électricité sera utilisée pour maintenir l’intérieur de l’aéronef et en particulier les batteries à des températures suffisamment élevées. D’épaisses couches d’isolant thermique envelopperont le corps de l’aéronef. Seul le capteur de l’instrument DraGNS qui, dans des conditions normales nécessite un cryoréfrigérateur, sera exposé sans aucune protection thermique.
La consommation électrique générée par la collecte et l’analyse chimique des échantillons du sol est importante mais porte sur des durées relativement brèves. Ce sont les activités de collecte continue de données (données météorologiques et sismiques) qui, bien que nécessitant une puissance électrique faible, demandent le plus d’énergie en ce qui concerne la charge utile.
Pour les télécommunications réalisées par l’intermédiaire d’une antenne parabolique à grand gain, 5 millijoules d’énergie sont nécessaires pour transmettre 1 bit d’information à la Terre. La transmission de 10 gigabits de données[Note 7] nécessite donc 140 kWh soit environ 80 jours de production du MMRTG.
Le jour sur Titan dure 384 heures (16 jours terrestres). Au niveau de Titan, la Terre se trouve pratiquement dans la même direction que le Soleil. Les communications avec la Terre se font donc uniquement de jour et la nuit est donc consacrée à la recharge des batteries. Malheureusement, du fait de sa durée (192 heures), il faudrait disposer d’une batterie de 140 kg pour stocker toute l’énergie produite ce qui dépasse largement les contraintes de masse de la mission. Les concepteurs de la mission ont donc accepté qu’une partie de l’énergie produite durant la nuit ne soit pas stockée pour son utilisation dans la journée.
Les communications avec la Terre se font via une antenne parabolique grand gain et une antenne moyen gain utilisant un Tube à ondes progressives de 100 watts en bande X[21],[18].
Performances en vol et aérodynamisme
L’atmosphère de Titan est beaucoup plus dense (4,4 fois) et plus froide que celle de la Terre. Elle est composée à 95 % d’azote ce qui abaisse sa viscosité. En conséquence, le nombre de Reynolds de Dragonfly sur Titan est plusieurs fois plus élevé que s’il volait sur Terre.
Le profil des pales des rotors est adapté pour optimiser son efficacité et il est proche de celui adopté par les pales des éoliennes terrestres ce qui présente l’avantage d’accroitre sa robustesse. Dans l’atmosphère de Titan, la vitesse du son est de 194 m/s, contre 340 m/s sur Terre, ce qui limite à la fois la vitesse de rotation des rotors et la longueur des pales. En pratique, cette contrainte a un impact réduit sur les performances de l’aéronef.
Compte tenu de ces caractéristiques, Dragonfly (masse environ 875 kg) pourra atteindre une vitesse maximale en vol de 10 m/s (36 km/h). Pour un vol sur une distance d’environ 40 km, la consommation électrique serait d’environ 2 kWh. Une batterie d’environ 30 kg, avec une densité énergétique de 100 Wh/kg, permettrait donc de franchir 60 km.
L’énergie nécessaire pour un vol ne croît pas de manière linéaire par rapport à la masse de l’aéronef mais en portant cette valeur à la puissance 1,5 ce qui constitue une des caractéristiques limitant la masse de Dragonfly. Malgré la vitesse maximale modeste envisagée, les concepteurs de l’aéronef ont soigné son aérodynamisme qui constitue un facteur de consommation électrique significatif dans l’atmosphère épaisse de Titan. Pour limiter les forces de trainée, la face avant de l’aéronef présente une forme aérodynamique, un carénage enveloppe les foreuses fixées sur les patins et l’antenne parabolique est repliée à plat pont en vol.
L’aéronef pourra être utilisé pour réaliser des sondages verticaux de la basse atmosphère jusqu’à une altitude d’environ 4 km. Le mode de propulsion permet une ascension verticale mais interdit une descente verticale. Le modèle de circulation atmosphérique de Titan établi à l’aide des données recueillies par la sonde spatiale Cassini prédit des vents dont la vitesse atteint au maximum de 1 à 2 m/s. Ceux-ci ne devraient donc avoir qu’un impact mineur sur la distance franchissable par Dragonfly[
