La physique des particules rencontre aujourd’hui deux difficultés. Un approche connue souu le nom de supersymétrie, par exemple, prévoit de nouvelles particules permettant d’annuler les fluctuations quantiques résultant du modèle standard des particules.
La supersymétrie (abrégée en SuSy) est une symétrie supposée de la physique des particules qui postule une relation profonde entre les particules de spin demi-entier (les fermions) qui constituent la matière et les particules de spin entier (les bosons) véhiculant les interactions. Dans le cadre de la SuSy, chaque fermion est associé à un « superpartenaire » de spin entier, alors que chaque boson est associé à un « superpartenaire » de spin demi-entier. (Wikipedia).
Une solution alternative a été proposée par Nima Arkani-Hamed, aujourd’hui à l’ Institute for Advanced Study à Princeton, New Jersey.
Celle-ci considère que la gravité peut fuir à travers ces extra-dimensions, la rendant progressivement plus faible qu’elle ne l »est aujourd’hui. Des modèles basés sur cette hypothèse prévoient une échelle de Planck inférieure à l’actuelle, la faisant paraître plus faible qu’elle ne l’est actuellement. Les extradimensions sont actuellement invisibles parce qu’elle sont trop faibles
La longueur de Planck ou échelle de Planck est une unité de longueur qui fait partie du système d’unités naturelles dites unités de Planck et vaut 1,616 25 En physique des particules et en cosmologie physique, l’échelle de Planck est une échelle d’énergie autour de 1,22 × 10 28 eV (l’énergie de Planck, correspondant à l’équivalent énergétique de la masse de Planck, 2,17645 × 10 − 8 kg) à laquelle les effets quantiques de la gravité deviennent significatifs. (Wikipedia)
Jusqu’à présent cependant ces hypothèses se sont révélées trop timides pour rendre compte des nouvelles observations du LHC, d’autant plus que celui-ci ne cesse pas d’en produire.
Pour résumer, la physique des particules est en crise. C’est pourquoi un petit groupe de théoriciens, ont commencé à explorer une alternative au réductionnisme tel qu’il est connu aujourd’hui. Au lieu d’étudier les différents niveaux d’énergie de l’univers comme des entités indépendantes, il les traite comme si elles se conditionnaient respectivement..
De la même façon, dans un arc en ciel l’ultraviolet et l’infrarouge, que nous ne pouvons pas voir, enferment les autres couleurs du spectre que nous pouvons voir, lerouge, l’orange, le jaune, le vert, le bleu, l’indigo et le violet. C’est dans l’équivalent de celles-ci qu’opère le modèle standard des particules.
Dans la fin des années 1970, les physiciens Andrew Cohen , David Kaplan et Ann Nelson , en étudiant les trous noirs calculèrent qu’il y avait un minimum d’énergie à partir duquel le modèle standard cessait d’être viable
voir Effective Field Theory, Black Holes, and the Cosmological Constant
https://arxiv.org/abs/hep-th/9803132
Autrement dit, les caractères physiques de tous ces éléments semblent se conditionner respectivement. Le phénomène a été dit UV/IR mixing.
https://lsa.umich.edu/content/dam/lctp-assets/lctp-docs/seth-koren.pdf
While studying black holes, Cohen and his colleagues calculated that there is a maximum length, or minimum energy, at which the standard model stops being valid. Beyond it, gravity takes over. It might seem intuitive that if there is a lower limit, there must also be an upper one. But crucially the researchers found that these seemingly unrelated cutoffs aren’t independent of each other. In other words, the physics at these vastly different energy scales seems to be related – a phenomenon dubbed
The quantum experiment that could prove reality doesn’t exist
The calculations didn’t suggest any concrete values for the low-energy cutoff. So Cohen and his collaborators tried out the largest scale they could think of: the radius of the observable universe. In a further fascinating twist, the corresponding UV cutoff to this IR cutoff turned out to be exactly the tiny energy value of the universe’s dark energy – not the Planck scale, after all. If the virtual particles contributing to dark energy abide by this limit, that could explain why these effects don’t drive dark energy to ridiculously large values.
For a long time, no one took much notice of this result. Most people had their sights set on supersymmetry and its ability to resolve the problem of the Higgs particle. But recently the crisis in physics has become more apparent, as many potential solutions to the fine-tuning problem have fallen away. As a result, the insights of Cohen and his colleagues have been receiving a huge amount of interest from theorists like myself. I started to wonder: if UV/IR mixing might help to solve the dark energy problem, could it also assist with the second major problem in fundamental physics, namely the unbearable lightness of the Higgs?
To answer this question, Tom Kephart at Vanderbilt University in Tennessee and I first attempted to work out what the IR cutoff might be for the Higgs boson based on the limited lifetime of the particle. We determined a UV cutoff that is 11 orders of magnitude below the Planck scale. It is better than what we had, and yet still a million times too large for the Higgs mass we see. Adding extra dimensions could resolve the problem entirely.
Over recent years, theorists like me have tried several other ways to solve the Higgs problem using variations of UV/IR mixing – each coming from various angles. Some, like ours, take their inspiration from Cohen and his colleagues’ work on black holes. Others were born in string theory, which suggests everything is made of unbelievably tiny strings. None of the attempts so far is supported by experimental evidence, but they may get us a step in the right direction. A few of them even point to one fundamental property of underlying reality that could be causing this mixing to happen, with big implications for how we see the universe.
Quantum entanglement
Quantum entanglement is usually described as a startling correlation between quantum objects. Prepare two particles in a particular way and a measurement of one immediately fixes the other, regardless of the distance between them. But these correlations can be thought of as proof of the fact that entangled quantum systems can’t be understood as being made out of parts: they are one and the same. Just as this indivisibility links faraway particles, it also can link quantum effects at different energies. In other words, quantum entanglement could be responsible for the UV and the IR scales of the universe seemingly talking to each other.
As we proceed up the size scale and down in energy, the effects of lower energies could be broken by a process called decoherence. This well-understood quantum phenomenon hides entanglement from the eye of a local observer. It is the reason why we experience no quantum weirdness in our daily lives.
Some work has found a relationship between entanglement and UV/IR mixing, but the bounds in Cohen and his colleagues’ study were caused by gravity rather than entanglement. Excitingly, recent work by leading researchers in string theory offers a solution: by suggesting gravity itself may be entanglement in disguise.
It is a bold idea, but I suspect entanglement causes UV/IR mixing. If so, there are huge implications for understanding reality at its most fundamental. If entanglement can be applied to the entire cosmos, then instead of everything being made of smaller and smaller pieces, it would turn the universe into “a single, indivisible unit”, in the words of quantum pioneer David Bohm. All objects in existence would be encoded in a universal wave function, a mathematical entity that describes a single, entangled state.
Soon, we may know if this matches up with reality. Cohen and his collaborators suggested UV/IR mixing would affect the interaction of electrons or subatomic particles called muons with electromagnetic fields, showing up as a mismatch between the standard model’s predictions and measurements. And the phenomenon may crop up in other processes, too. One example my colleagues and I are currently exploring relates to neutrino masses. Unlike any other particles, the almost non-existent masses of the elusive neutrinos can be entirely generated by virtual particles, according to some models. This means they should be more sensitive than other particles to any UV/IR mixing effects.
If we do find evidence to support this idea, it would dramatically alter the way we conceive of the cosmos. It would mean we could not only see a world in a grain of sand, as the poet William Blake once said, but we could also quite literally see the entire universe in its tiniest pieces and particles. While this might sound like just a different way of going about physics, it is much more than that. I believe that we are on the way to a completely new understanding of how the universe is put together.
Heinrich Päs is a theoretical physicist at the Technical University of Dortmund in Germany and the author of All is One
